Incremental Treatments of the Full Configuration Interaction Problem

Janus Juul Eriksen

Join us for a talk by Associate Professor Janus Juul Eriksen (Technical University of Denmark).

Abstract

I will start by giving a brief account of the various areas of electronic-structure theory that we are focused on within my group @ DTU, before next delving into our work on so-called many-body expanded full configuration interaction (MBE-FCI) theory [1-4].

In MBE-FCI, exact solutions to the electronic Schrödinger equation are approximated by performing a multitude of complete active space CI (CASCI) calculations within successively larger truncated orbital spaces, that is, without recourse to an explicit sampling of the full linear wave function [5]. Among other things, I will present how we can make use of (non-)Abelian point-group symmetries within MBE-FCI to simulate chemical problems of unprecedented size [6,7]. Finally, I will close by discussing some personal reflections on how incremental takes on electronic-structure theory may lend themselves favourable to emerging fault-tolerant quantum computing.


References:

[1]: Eriksen, J. J.; Lipparini, F.; Gauss, J.: Virtual Orbital Many-Body Expansions: A
Possible Route towards the Full Configuration Interaction Limit. J. Phys. Chem. Lett.
8, 4633 (2017)
[2]: Eriksen, J. J.; Gauss, J.: Generalized Many-Body Expanded Full Configuration
Interaction Theory. J. Phys. Chem. Lett. 10, 7910 (2019)
[3]: Eriksen, J. J.; Gauss, J.: Incremental Treatments of the Full Configuration Interaction
Problem. WIREs Comput. Mol. Sci. 11, e1525 (2021)
[4]: Greiner, J.; Gauss, J.; Eriksen, J. J.: Error Control and Automatic Detection of
Reference Active Spaces in Many-Body Expanded Full Configuration Interaction. J.
Phys. Chem. A 128, 6806 (2024)
[5]: Eriksen, J. J.: The Shape of Full Configuration Interaction to Come. J. Phys.
Chem. Lett. 12, 418 (2021)
[6]: Greiner, J.; Eriksen, J. J.: Symmetrization of Localized Molecular Orbitals. J.
Phys. Chem. A 127, 3535 (2023)
[7]: Greiner, J.; Gauss, J.; Eriksen, J. J.: Exploiting Non-Abelian Point-Group Symmetry
to Estimate the Exact Ground-State Correlation Energy of Benzene in a Polarized
Split-Valence Triple-Zeta Basis Set. J. Phys. Chem. Lett. 15, 9881 (2024)